Modulated Structures of Some Alkali Molybdates and Tungstates

By A.J.van den Berg, F.Tuinstra and J. Warczewski§
Laboratorium voor Technische Natuurkunde, Technische Hogeschool, Delft, The Netherlands

(Received 16 October 1972; accepted 7 November 1972)

Abstract

Some of the high-temperature phases of $\mathrm{K}_{2} \mathrm{MoO}_{4}, \mathrm{~K}_{2} \mathrm{WO}_{4}$ and $\mathrm{Rb}_{2} \mathrm{WO}_{4}$ are shown to have modulated structures. The modulation wave vector \mathbf{k} is rationally independent of the basic vectors of the unit cell. The diffraction patterns have symmetry $6 / \mathrm{mmm}$. The \mathbf{k} vector points in the direction of the a^{*} axis; $\mathbf{k}=\kappa \mathbf{a}^{*}$. For $\mathrm{K}_{2} \mathrm{MoO}_{4}$ the value of κ changes continuously from 0.297 at $360^{\circ} \mathrm{C}$ to 0.290 at $430^{\circ} \mathrm{C}$. The values for $\mathrm{K}_{2} \mathrm{WO}_{4}$ and $\mathrm{Rb}_{2} \mathrm{WO}_{4}$ are 0.250 at $395^{\circ} \mathrm{C}$ and 0.363 at $435^{\circ} \mathrm{C}$ respectively. A model for the modulation is proposed. In this model the modulation is assumed to be a periodic change in the orientations of the anion tetrahedra.

Introduction

Displacive modulation of structures of pure stoichiometric compounds has been reported for $\gamma-\mathrm{Na}_{2} \mathrm{CO}_{3}$ (Brouns, Visser \& de Wolff 1964; Dubbeldam \& de Wolff 1969) and NaNO_{2} (Hoshino \& Motegi, 1967). The modulation is observed through the presence of satellite reflexions in the X-ray diffraction patterns. Modulated structures of this type differ from superstructures in that the modulation wave vector is rationally independent from the basic vectors of the unit cell. In both examples mentioned the fractional components of this vector change continously with temperature.

As we will show in the present paper some more compounds can be added to this group, namely some molybdates and tungstates of potassium and rubidium.

Van den Akker, Koster \& Rieck (1970) recently reported non-indexable lines in certain high temperature phases of $\mathrm{K}_{2} \mathrm{MoO}_{4}, \mathrm{~K}_{2} \mathrm{WO}_{4}$ and $\mathrm{Rb}_{2} \mathrm{WO}_{4}$. The present investigation of $\mathrm{K}_{2} \mathrm{MoO}_{4}$ shows that this phase has a modulated structure. For $\mathrm{K}_{2} \mathrm{WO}_{4}$ and $\mathrm{Rb}_{2} \mathrm{WO}_{4} \mathrm{Dr} \mathrm{A}$. S. Koster was kind enough to put the powder patterns, used in the above mentioned paper, at our disposal. The same type of modulation was found to apply to these diffraction patterns as to those for $\mathrm{K}_{2} \mathrm{MoO}_{4}$.

For the examples of the modulated structures mentioned above, as well as for the cases reported here, the phase transitions and the range in which the modulation is present are indicated in Fig. 1.

Experimental

Samples of $\mathrm{K}_{2} \mathrm{MoO}_{4}$ were obtained in the manner described by Kools, Koster \& Rieck (1970). From the powdered samples, pellets of about 0.1 mm thickness were pressed. These pellets served as specimens in a Guinier-Lenné camera. From the original samples crystalline aggregates were selected, which seemed to be of the right size for single-crystal work. Inserted in a

[^0] Academy of Mining and Metallurgy, Cracow, Poland.
capillary tube and mounted in a precession camera these aggregates, however, proved to consist of numerous crystallites of the monoclinic low temperature phase (Gatehouse \& Leverett, 1969), having the c axis in common. The a^{*} axes of these crystallites are equally distributed among three directions making angles of 120° with respect to one another. The $h k 0$ diffraction pattern consequently showed a hexagonal appearance. On being heated beyond $320^{\circ} \mathrm{C}$ the crystalline aggregate transformed into a single crystal of the intermediate temperature phase. With a precession camera the reflexions in the reciprocal planes $h k 0, h k 1$, $h k 2, h 0 l, h 1 l, h 2 l$ and $h h l$ were recorded at $360^{\circ} \mathrm{C}$ using polaroid films. The sample heating was achieved by using a thin $\mathrm{Ni}-\mathrm{Cr}$ filament wound around the capillary tube which contained the crystallite and a thermocouple junction. The temperature was controlled electronically to within $5^{\circ} \mathrm{C}$.

Indexing

$\mathrm{K}_{2} \mathrm{MoO}_{4}$

We were able to account for all observed reflexions from $\mathrm{K}_{2} \mathrm{MoO}_{4}$ at $366^{\circ} \mathrm{C}$ using a hexagonal reciprocal lattice in which several lattice points are surrounded by a hexagon of six satellites. These hexagons are oriented perpendicularly to the c^{*} axis, the satellites occurring in the directions of the adjacent main lattice points. The indexing was fully confirmed in the single crystal patterns, two of which are shown in Fig. 2(a) and (b). The indexing of our powder pattern is shown in Table 1. The satellite reflexions are described by two extra integer indices m and n defining the corresponding reciprocal lattice vector:

$$
\mathbf{R}=\mathbf{H}(h k l)+\mathbf{k}(m n)=h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}+\kappa\left(m \mathbf{a}^{*}+n \mathbf{b}^{*}\right)
$$

where

$$
(m, n)= \pm(1,0), \pm(1, \overline{1}) \text { or } \pm(0,1)
$$

No higher order satellites were observed. The number κ is non-integer. Its value was found to change continuously with temperature from $0.297(\pm 0.001)$ at about
$360^{\circ} \mathrm{C}$ to $0.290(\pm 0.001)$ at about $430^{\circ} \mathrm{C}$, that is about $10^{\circ} \mathrm{C}$ below the higher transition point. These results were obtained after a least-squares refinement using both the main lattice reflexions and the satellite reflexions; the numbers in parentheses are standard deviations.

Table 1. Observed spacings and indexing of the modulated structure of $\mathrm{K}_{2} \mathrm{MoO}_{4}$ at $366^{\circ} \mathrm{C}(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})$

The Laue symmetry of the whole diffraction pattern is $6 / \mathrm{mmm}$. In the Guinier-Lenné powder photographs, with the temperature increasing continuously through the $440^{\circ} \mathrm{C}$ transition, the positions of the main lattice reflexions change almost continuously (there appears to be a small jump in the length of the c axis). No discontinuity at all is visible in the intensities of these lines.

In particular the extinction rule: $h h l$ absent for l odd, applies both to the main pattern below $440^{\circ} \mathrm{C}$ and to the pattern above this transition point. This was corroborated by the pricessi n photographs taken at $360^{\circ} \mathrm{C}$ and some additional photographs taken at $480^{\circ} \mathrm{C}$. On the single crystal patterns satellites are observed around the following reflexions:
001, 101, 201, 301, 211, 102, 202, 212, 003, 103, 104, 204, 214, 005, 115, 106 and 206.

Not all of these are present in Table 1, because some were too weak to be observed in the powder diagrams.
$\mathrm{K}_{2} \mathrm{WO}_{4}$ and $\mathrm{Rb}_{2} \mathrm{WO}_{4}$
The powder patterns in the intermediate phases of these compounds were explained in a similar fashion as the one of $\mathrm{K}_{2} \mathrm{MoO}_{4}$. The phase transitions have already been reported (van den Akker, Koster \& Rieck 1970).

The average structures display the same extinction rule as for $\mathrm{K}_{2} \mathrm{MoO}_{4}$. The values of κ are: 0.250 for $\mathrm{K}_{2} \mathrm{WO}_{4}$ (at $395^{\circ} \mathrm{C}$) and 0.363 for $\mathrm{Rb}_{2} \mathrm{WO}_{4}$ (st $435^{\circ} \mathrm{C}$). The indexings for $\mathrm{K}_{2} \mathrm{WO}_{4}$ and $\mathrm{Rb}_{2} \mathrm{WO}_{4}$ are given in the Tables 2 and 3 respectively.

Table 2. Observed spacings and indexing of the modulated structure of $\mathrm{K}_{2} \mathrm{WO}_{4}$ at $395^{\circ} \mathrm{C}^{*}$

$d(\AA)$	I	h	k	l	m	n	$\Delta 2 \theta$
7.52	w	0	0	1	0	1	+0.03
6.07	w (broad)	1	0	0	$\overline{1}$	1	-0.08
5.512	$v s$	1	0	0	-	-	+0.02
4.843	w	1	0	1	\bar{T}	1	-0.02
4.543	$v v s$	1	0	1	-	-	+0.06
3.993	$v s$	0	0	2	-	-	+0.03
3.507	w	1	0	2	$\overline{1}$	0	+0.02
3.338	m	1	0	2	$\overline{1}$	1	-0.01
3.233	$v s$	1	0	2	-	-	+0.03
3.179	$v s$	1	1	0	-	-	+0.02
3.068	m	1	0	2	0	1	0.00
2.959	w	1	0	2	1	0	+0.03
2.926	w	1	1	1	1	1	0.00
2.753	s	2	0	0	-	-	+0.02
2.657	w	1	1	1	0	1	0.00
2.600	s	2	0	1	-	-	-0.01
2.486	s	1	1	2	-	-	+0.01
2.394	s	1	0	3	-	-	-0.01
2.352	w	2	0	2	$\overline{1}$	1	-0.03
2.264	s	2	0	2	-	-	-0.01
2.163	w	2	0	2	0	1	-0.02
2.143	w	1	1	3	1	0	+0.01
2.086	$v w$	2	0	2	1	0	+0.02
2.079	m	2	1	0	-	-	-0.02
2.012	$v s$	2	1	1	-	-	-0.02
1.995	m	0	0	4	-	-	+0.02
1.983	w	2	1	2	T	0	+0.05
1.949	$v w$	2	1	2	0	1	-0.02
1.923	$v w$	1	0	4	T	0	-0.03
1.912	m	2	0	3	-	-	0.00

* The values of d and the intensities were provided by $\operatorname{Dr} \mathrm{A}$. S. Koster. In the column $\Delta 2 \theta$, the values refer to differences between 2θ values calculated using $a=6.354, c=7.977 \AA$ and $\kappa=0 \cdot 250$, and 2θ values calculated from the $d_{\text {obs }}$ list with $\lambda=1.54 \AA$.

Table 3. Observed spacings and indexing of the modulated structure of $\mathrm{Rb}_{2} \mathrm{WO}_{4}$ at $435^{\circ} \mathrm{C}^{*}$

$d(\AA)$	l	h	k	l	m	n	$\Delta 2 \theta$
5.681	m	1	0	0	-	-	0.01
4.687	s	1	0	1	-	-	0.01
4.154	m	0	0	2	-	-	0.03
3.758	w	1	0	2	$\overline{1}$	0	-0.01
3.492	w	1	0	2	1	1	-0.01
3.352	s	1	0	2	-	-	0.02
3.280	$v s$	1	1	0	-	-	0.02
3.100	f	1	0	2	0	1	0.06
2.951	f	1	0	2	1	0	0.11
2.839	w	2	0	0	-	-	0.00
2.687	w	2	0	1	-	-	0.01
2.659	$v f$	2	0	2	1	0	-0.02
2.573	m	1	1	2	-	-	0.02
2.488	m	1	0	3	-	-	0.03
2.468	f	2	0	2	1	1	-0.04
2.343	s	2	0	2	-	-	0.00
2.188	$v f$	2	0	2	0	1	0.00
2.147	$v f$	2	1	0	-	-	0.02
2.118	$v f$	2	1	2	$\overline{1}$	0	0.02
2.076	m	2	0	2	1	0	-0.06
1.9796	f	2	0	3	-	-	-0.03
1.9071	m	2	1	2	-	-	0.03
1.8917	m	3	0	0	-	-	-0.02
1.7528	m	1	1	4	-	-	0.00
1.6953	w	2	1	3	-	-	0.00
1.6392	m	2	2	0	-	-	0.01
1.5923	f	1	0	5	-	-	-0.01
1.5466	f	3	1	1	-	-	-0.02

* See footnote to Table 2. Here $a=6 \cdot 556, c=8.296 \AA$ and $\kappa=0.363$.

Discussion

$\mathrm{K}_{2} \mathrm{MoO}_{4}$

Because of the Laue symmetry and the systematic absences the space group can be $P \overline{6} 2 c, P 6_{3} m c$ or $P 6_{3} / m m c$. This applies to both the average modulated structure and the hexagonal structure above $440^{\circ} \mathrm{C}$. At $366^{\circ} \mathrm{C}$ the unit-cell parameters are: $a=6.31$ and $c=$
$7.94 \AA$. The corresponding cell is occupied by two $\mathrm{K}_{2} \mathrm{MoO}_{4}$ groups. The structure is a derivative of the 'basic structure', which Eysel (1971) showed to be underlying many structures of $\mathrm{A}_{2} \mathrm{BX}_{4}$ compounds, including $\mathrm{K}_{2} \mathrm{MoO}_{4}, \mathrm{Rb}_{2} \mathrm{WO}_{4}$ and $\mathrm{K}_{2} \mathrm{WO}_{4}$. In this structure four K^{+}ions are located at $0,0,0 ; 0,0, \frac{1}{2} ; \frac{1}{3}, \frac{2}{3}, z_{k}$; $\frac{2}{3}, \frac{1}{3}, \frac{1}{2}+z_{k}$. The two Mo atoms occupy positions $\frac{1}{3}, \frac{2}{3}, z_{m}$ and $\frac{2}{3}, \frac{1}{3}, \frac{1}{2}+z_{m}$ (see also Fischmeister, 1962).

In this basic structure the space groups $P \overline{6} 2 c$ and $P 6_{3} / m m c$ would generate two superposed MoO_{4} tetrahedra around each anion position. The mean value of the parameters $z_{m 1}$ and $z_{m 2}$ of the corresponding two Mo atoms is 0.25 (or 0.75). Of the two interpenetrating MoO_{4} tetrahedra, one is upside down with respect to the other (assuming the c axis to be vertical). Such a structure could well represent the average modulated structure.

On the other hand, the space group $P 6_{3} m c$ does not require more than one MoO_{4} group at each of the anion positions of the basic structure. Taking into account the sizes of the ions, only one structural type is feasible. This structure type was recently proposed by Eysel \& Hahn (1970) (the high $\mathrm{K}_{2} \mathrm{SO}_{4}$ type) for a series of hightemperature modifications of compounds $\mathrm{A}_{2} \mathrm{BX}_{4}$, including $\mathrm{K}_{2} \mathrm{MoO}_{4}, \mathrm{Rb}_{2} \mathrm{WO}_{4}$ and $\mathrm{K}_{2} \mathrm{WO}_{4}$ (see Eysel, 1971). In this structure, which of course corresponds to Eysel's 'basic structure', all tetrahedra are pointing in the same sense along the \mathbf{c} direction. With this structure, in which z_{m} and z_{k} are still to be chosen properly, we tried to account for the striking absence of some reflexions (104,204 and 214) in the pattern of $\mathrm{K}_{2} \mathrm{MoO}_{4}$ (see also Fig. 2). We found that this is impossible, unless very unrealistic interatomic distances are assumed.

If we assume that the anion positions in the average structure are occupied by two MoO_{4} groups (of weight $\frac{1}{2}$), the above mentioned absences can be easily accounted for. Such a structure, which does not lead to

Fig. 1. In the hatched regions modulated structures have been observed. The numbers underneath each line indicate the temperature in ${ }^{\circ} \mathrm{C}$.

Fig. 2. Precession photographs of $\mathrm{K}_{2} \mathrm{MoO}_{4}$. (a) The plane $h k 2$ in reciprocal space. The a^{*} axis is horizontal. (b) The $h 0 k$ plane. Satellites are particularly observable at $l=2$ and $l=4$. The c^{*} axis is vertical. (The sharp irregular spots are reflexions due to the heating filament.)
unacceptable interatomic distances, fits naturally the space groups $P \overline{6} 2 c$ and $P 6_{3} / m m c$ already discussed. It makes the space group $P 6_{3} m c$ rather unlikely though not impossible.

The modulation in this case thus could well be a long-range order in the orientations of the MoO_{4} tetrahedra oriented approximately with their peaks upward over one half of the modulation period and downward over the other half of the period. Above the transition point at $440^{\circ} \mathrm{C}$, the tetrahedra will presumably be distributed at random among the possible orientations.
It seems possible that this distribution stems to some extent from rotational freedom of the anion (see also Bredig, 1943). However, this cannot be decided from our data.
The model proposed here agrees well with predictions of Fischmeister (1962) based on steric calculations carried out for the high temperature modifications of a series of sulphates. The structure of these sulphates also belongs to the basic structure type. Using steric as well as thermodynamic evidence, Fischmeister proposed three possible structure types:
(i) two possible orientations of the anion tetrahedra, pointing either upward or downward along the \mathbf{c} direction, are randomly distributed among the anion positions,
(ii) domains are present in which the orientation of all tetrahedra is the same,
(iii) a superstructure is present.

In all of these cases at least two anions with weight $\frac{1}{2}$ must be superposed in order to get the average structure. Our model of the modulated structure can be described as a special case of (ii) or a generalization of (iii).

Since the average modulated structure has been
shown to be essentially identical to the hexagonal high temperature form, the latter is not likely to possess Eysel's high $\mathrm{K}_{2} \mathrm{SO}_{4}$ structure either. We believe that it represents Fischmeister's type (i).
$\mathrm{K}_{2} \mathrm{WO}_{4}, \mathrm{Rb}_{2} \mathrm{WO}_{4}$
The above interpretation applies equally well to these compounds. In the case of $\mathrm{K}_{2} \mathrm{WO}_{4}$ a superstructure with $\kappa=\frac{1}{4}$ seems to be possible. Some reflexions with $l=4$, which were absent in $\mathrm{K}_{2} \mathrm{MoO}_{4}$ are present here with very weak intensities.

We thank Professor P. M. de Wolff for his valuable advice and criticism, Mr G. M. Fraase Storm for his skillful technical assistance and Dr A. S. Koster for putting the diffraction patterns of $\mathrm{Rb}_{2} \mathrm{WO}_{4}$ and $\mathrm{K}_{2} \mathrm{WO}_{4}$ at our disposal.

References

Akier, A. W. M. van den, Koster, A. S. \& Rieck, G. D. (1970). J. Appl. Cryst. 3, 389-392.

Bredig, M. A. (1943). J. Phys. Chem. 47, 587-590.
Brouns, E., Visser, J. W. \& de Wolff, P. M. (1964). Acta Cryst. 17, 614.
Dubbeldam, G. C. \& de Wolff, P. M. (1969). Acta Cryst. B25, 2665-2667.
Eysel, W. (1971). Habilitationsschrift, Technische Hochschule Aachen.
Eysel, W. \& Hahn, T. (1970). Z. Kristallogr. 131, 322-341.
Fischmeister, H. F. (1962). Mh. Chem. 93, 420-434.
Gatehouse, B. M. \& Leverett, P. (1969). J. Chem. Soc. (A), pp. 849-854.

Hoshino, S. \& Motegi, H. (1967). Jap. J. Appl. Phys. 6, 708-718.
Kools, F. X. N. M., Koster, A. S. \& Rieck, G. D. (1970). Acta Cryst. B26, 1974-1977.

Acta Cryst. (1973). B29, 589

Least-squares Refinement and the Weighted Difference Synthesis

By J.D. Dunitz and P.Seiler
Laboratory of Organic Chemistry, Swiss Federal Institute of Technology, 8006 Zürich, Switzerland

(Received 2 November 1972; accepted 10 November 1972)
The weights to be assigned in least-squares refinements of crystal structures are discussed in terms of a weighted difference synthesis in which electron density differences close to atomic centres are regarded as more important than those in other regions. Least-squares refinement with suitably modified weights is shown to produce more acceptable atomic parameters in certain cases than those obtained with experimental weights.

Relation between least-squares refinement and difference synthesis

Suppose that we wish to refine the parameters describing a crystal structure by the method of least squares
and that we have at our disposal a set of experimental F_{o} values of uniform quality and free from systematic error. It is easily shown that minimization of

$$
\begin{equation*}
Q=\sum_{h} w(\mathbf{h})\left[F_{o}(\mathbf{h})-F_{c}(\mathbf{h})\right]^{2} \tag{1}
\end{equation*}
$$

[^0]: § On leave from the Institute of Nuclear Technique,

